Angle-resolved photoemission spectroscopy on emergent quantum materials

A crucial problem to understand the electronic of exfoliated graphene

Van der Waals heterostructures

Geim, Nature (2013)

- Insulating substrate induces the strong charging effect.
- Sample size : only several tens microns sample is obtained, but this sample size is quite small for current ARPES beam spot (> 100 μ m) in VUV region. Nano-ARPES provides an advantage to study the electronic structure of exfoliated graphene, but the used photon energy is above 100 eV due to the short focal length of zone plate. It is difficult to make line shape analysis for the many body effect due the poor momentum resolution in high photon energy and the matrix element effect.
- *ex-situ* sample preparation is not favorable for ARPES experiments.

The band mapping result of Kish graphite

Bilayer graphene / Highly doped Si substrate

Raman result : BLG is the area marked with red color.

The electronic structure of bilayer graphene

Cheng et al., Scientific Report (2015)

82 eV ME effect

Simulated result

Experimental result

2

What does ARPES measure

Eli Rotenberg, ALS summer school

The carriers have a finite lifetime due to absorption and emission of phonons and other excitations

Eli Rotenberg, ALS summer school

Self energy in photoemission spectra

The quantity determined in ARPES experiments is the single-particle spectral function

$$G(k, \omega) = \frac{1}{\omega - \varepsilon_k - \Sigma(k, \omega)}$$

$$A(k, \omega) = \frac{\operatorname{Im}\Sigma(k, \omega)}{[\omega - \varepsilon_k - \operatorname{Re}\Sigma(k, \omega)]^2 + [\operatorname{Im}\Sigma(k, \omega)]^2}$$

$$\sum_{\substack{hv_k \Delta k = \frac{hv_k}{l} = |2\operatorname{Im}\Sigma(k, \omega)|}}{\sum = \operatorname{Re}\Sigma + i\operatorname{Im}\Sigma}$$
Dispersion:
E-k Relation (Velocity;
Effective mass etc.)
Scattering rate (Lifetime)

Optimally doped Bi-2212 cuprate

T. Valla et al., Science 285, 2110 (2000)

Electron-phonon interaction in doped graphene

Fedorov, Nat. Comm. (2014)

Anisotropic *e-ph* interaction property on K-Γ and K-M branches

The KK transformation between Re Σ and Im Σ

Im Σ extracted from the width of line shape analysis is consistent with Im Σ determined by Re Σ

Hydrogen intercalated graphene/SiC

Graphene intercalated compounds (GICs)

Pan et al., PRL (2011) Voloshina et al., NJP (2011) Varykhalov et al., PRB (2010)

Beyond Graphene : Graphene nanoribbons (GNRs), transition metal dichalcogenides (TMDs), black phosphorus (BP), stanene and van der Waals heterstructure

FET Basics – Digital CMOS

Requirements for logic

- High on-off ratio I_{on}/I_{off} 10⁴...10⁷.
- High I_{on} (high speed).
- Low I_{off} (low static power).
- Steep slope in subthreshold, i.e., small SS.

Frank Schwierz, Nanoscale (2015)

2D materials :potential candidates for future applications

Figure 1. Schematic illustrating advantages of 2D materials: surfaces of (a) 3D and (b) 2D materials. The pristine interfaces (without out-of-plane dangling bonds) of 2D materials help reduce the interface traps. Mobile charge distribution in (c) 3D and (d) 2D crystals used as channel materials. The carrier confinement effect in 2D materials leads to excellent gate electrostatics. (e) Various types of 2D materials from insulator to superconductor. E_g denotes the band gap.

Kang et al., Proc. SPIE[®](2014)

Graphene family

Figure 2. (a) Schematic of carbon atom and carbon allotropes, from 0D to 3D; (b) unit cell, basis and bond length of graphene; (c) atomic orbitals of graphene; (d, e) energy dispersion of graphene, where the energy dispersion is linear for low energies near the six corners (Dirac points) of the two-dimensional hexagonal Brillouin zone. (f) Energy dispersion of a semiconducting GNR, where a bandgap can be engineered by varying the width.

Kang et al., Proc. SPIE (2014)

Crystal structure of GNRs

 Armchair Graphene Nanoribbons (AGNRs)
 TB simulation : semiconducting or metallic depending on the width of AGNRs

Zigzag Graphene Nanoribbons (ZGNRs) TB simulation : metallic for all ZGNRs

ribbon width and the edge configuration!

GNR bandgap vs width.

FS, Pezoldt, Granzner, Nanoscale 2015.

Frank Schwierz, Nanoscale (2015)

Sample preparation for GNRs

Nevius et al., Nano Lett. (2014) Palacio et al., Nano Lett. (2014)

Using ARPES to probe GNRs/SiC

Nevius et al., Nano Lett. (2014)

Frank Schwierz, Nanoscale (2015)

Technology

Silicon rival MoS2 promises small, lowenergy chips

③ 8 March 2012 | Technology

The first computer chip made out of a substance described as a "promising" alternative to silicon has been tested by researchers.

The Switzerland-based team used molybdenite (MoS2) - a dark-coloured, naturally occurring mineral.

The group said the substance could be used in thinner layers than silicon, which is currently the most commonly used component in electronics.

The researchers say molybdenite microchips would need less power than existing silicon-based circuits

Top Stories

Bad weather hits Japan quake survivors

Tens of thousands of people forced into shelters by two deadly tremors in Japan endure heavy rain and cold temperatures, as rescue efforts continue.

0 6 hours ago

Earthquake kills dozens in Ecuador

O 2 minutes ago

Rousseff in last-minute bid for support

0 6 hours ago

It said MoS2 could make smaller, more flexible chips that used less energy.

A demonstration of electric transistor fabricated with monolayer MoS_2 shows high current on/off ratios of > 10^8 . Even the mobility ~ $200 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$ is much lower than that in graphene. The large current on/off ratio originates from sizeable band gap in MoS_2 .

The band structure of MoS₂

*Kuc et. al., PRB (2011)*²⁷

The band structure of WS₂

Kuc et. al., PRB (2011)²⁸

MoS2 #1

Photon energy : 42 eV, measurement temperature : 100 K, Sample cleaved in air A state located at -0.8 eV of binding energy was observed below the Fermi level.

Upper: band mapping along the ΓK and ΓM directions Bottom: EDCs and the enlargement for a energy scale between -1.5 eV and E_F

The electronic structure of MoSe₂

Zhang et al., Nat. Nano. (2013)

Zhang et al., Nat. Nano. (2013)

Alkali metal doped MoSe₂

Zhang et al., Nat. Nano. (2013)

Black phosphorus (BP)

Catellanoas-Gomez, J. Phys. Chem. Lett. (2015)

The degradation of black phosphorus (BP)

Catellanoas-Gomez, J. Phys. Chem. Lett. (2015)

Unencapsulated

Encapsulated

Anisotropic Dirac semimetal state in BP

Anisotropic Dirac semimetal state in BP

Topological insulator and related materials

3D topological insulators

Strong spin-orbit coupling Induce the band inversion

Xiao-Liang Qi and Shou-Cheng Zhang, RMP (2011)

Predictions of 3D topological insulators

Xiao-Liang Qi and Shou-Cheng Zhang, RMP (2011)

Xia et al., Nature Physics (2009) Hsieh et al., Nature (2009) Chen et al, Science (2009)

Predictions of 3D topological insulators

Spectra taken at BL21B1, NSRRC

Y. Ando, J. Phys. Soc. Japan (2013)

The electronic structure of Sb₂Te₃ insulators

Cheng et al., submitted to Sci. Rep.

Initial growth condition of Bi family TIs

Ultrafast Dynamics of Dirac Fermion in Topological Insulators

Luo et al., Nano Lett. (2013)

Estimate the surface charge carrier density : SdH oscillations ($n_s =$

k. (Å⁻¹)

►K

K-

ARPES

 k_F^2

Tuning the position of the Dirac point in ternary topological insulators

Another way is to dope topological insulators : Cu, Mn, Ca, C....

Superconductivity in Cu doped Bi₂Se₃ compound

 $Cu_{x}Bi_{2}Se_{3}$ for 0.1<x<0.15

Hor et al., PRL (2010)

Superconductivity in Cu doped Bi₂Se₃ compound

Tanaka et al., PRB (2012)

Superconductivity in Cu doped Bi₂Se₃ compound

Cu doped epitaxial Bi₂Te₃ thin films

Zhu et al., Surf. Sci. (2013)

The crystal structure of Bi family TIs

The role of Cu atoms in Cu doped Bi₂Se₃ and Bi₂Te₃ topological insulators

Cu_xBi₂Se₃ or Bi_{2-x}Cu_xSe₃?

Hor et al., PRL (2010)

XRD results of Cu doped Bi₂Se₃ and Bi₂Te₃ TIs

Lattice constant of Cu doped Bi₂Se₃ and Bi₂Te₃

Concentration of Cu doped in Bi ₂ Se ₃	Lattice constant along c-axis (Å)
undoped	28.620
0.16	28.642
0.2	28.660

Concentration of Cu doped in Bi ₂ Te ₃	Lattice constant along c-axis (Å)	
undoped	30.574	
0.16	30.562	
0.30	30.522	
0.48	30.463	

ARPES results of Cu doped Bi₂Se₃ TIs

Cheng et al., submitted to PRB

ARPES results of Cu doped Bi₂Se₃ TIs

XAS results of Cu doped Bi₂Se₃ and Bi₂Te₃ TIs

Light element doped TIs

0.1

0.0-

-0.1 -

-0.2-

-0.3-

-0.4 -

-0.5-

-0.6-4

#C4/第一批/C=0.08

0.1

0.0-

-0.1 -

-0.2-

-0.3-

-0.4 -

-0.5-

-0.6-

EDC at Γ with varied tilting and

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0.1

0.0-

-0.1-

-0.2-

-0.3-

-0.4 -

-0.5-

-0.6-

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0.30

E-E_F (eV)

-0.20

The electronic structure of Sb₂Te₂Se

Comparison of Sb₂Te₃ and a Sb₂Te₂Se

3 Sb₂Te₃ ($\overline{\Gamma}\overline{K}$)

Robustness of a Topologically Protected Surface State in a Sb₂Te₂Se Single Crystal

Toward future electronic devices

MBE growth topological insulators (Bi₂Te₃)

Li et al., Adv. Mat. (2010)

Temperature effect on MBE growth TIs

Van der Waals heterostructure

Van der Waals heterostructure : MoS₂/graphene

Miwa et al., ACS Nano (2015)

Van der Waals heterostructure : Graphene/MoS₂

Hybrid nanostructure : Stanene/Bi₂Te₃

Single Bi bilayer/Bi₂Se₃

Summary

- ARPES can provide a deeper insight for the understanding of electronic property in 2D materials.
- A combination with other tools, such as XPS, XAS, STM, pumpprobe experiment ...etc., can establish better model to explain novel phenomena in emergent materials
- A cooperation with theorists is necessary for ARPES guys.
- Hungry for high quality single crystal or thin film

Acknowledgement

ARPES, XAS, XRD

Wei-Chun Chen, Jih-Young Yuh and Dr. Ku-Ding Tsuei (NSRRC) Fu-Zhong Xiao (Deparement of Physics, NTHU)

Single Crystals

Prof. Ming-Chi Chou (Department of Materials Optoelectronic Science, NSYSU) Prof. Chao-Kuei Lee (Department of Photonics, NSYSU) Prof. Li-Wei Tu (Department of Physics, NSYSU) Prof. Hung-Duen Yang (Department of Physics, NSYSU)

Single Crystals and pump-probe experiments

Prof. Chih-Wei Luo (Department of Electrophysics, NCTU) Prof. Marin M. Gospodinov (Institute of Solid State Physics, Bulgarian Academy of Sciences)